
MIDAS Digital Audio System

Programmer’s Guide

Petteri Kangaslampi

September 22, 1997

Contents

1 Introduction 1

1.1 Welcome . 1

1.2 What is MIDAS? . 1

2 Getting started 2

2.1 Installing MIDAS . 2

2.2 Compiling with MIDAS . 2

2.3 Linking with MIDAS . 3

2.3.1 Windows NT/95 . 3

2.3.2 MS-DOS . 4

2.3.3 Linux . 4

2.4 Using MIDAS from the IDE . 4

2.4.1 Using MIDAS with Visual C Developer Studio 5

2.4.2 Using MIDAS with Watcom C IDE 5

2.5 A simple module player example . 6

2.5.1 C module player example . 6

2.5.2 Delphi module player example . 7

2.5.3 Module player example description 7

i

CONTENTS ii

3 Using MIDAS Digital Audio System 9

3.1 Initializing and configuring MIDAS . 9

3.2 Uninitializing MIDAS . 10

3.3 Using modules . 10

3.3.1 Loading and deallocating modules . 10

3.3.2 Playing modules . 11

3.3.3 Controlling module playback . 11

3.3.4 Getting module information . 11

3.4 Using samples . 12

3.4.1 Loading samples . 12

3.4.2 Playing samples . 12

3.4.3 Samples and channels . 13

3.4.4 Controlling sample playback . 13

3.4.5 Getting sample information . 13

3.5 Using streams . 14

3.6 Playing streams . 14

3.6.1 Controlling stream playback . 15

3.6.2 Getting stream information . 15

3.7 Using echo effects . 15

3.7.1 Adding echo effects . 15

3.7.2 The echo effect structure . 16

4 Advanced topics 17

4.1 Optimizing MIDAS performance . 17

4.1.1 The number of channels . 17

4.1.2 Sample types . 18

4.1.3 Output settings . 19

CONTENTS iii

4.2 Using -law compression . 19

4.2.1 Encoding -law samples . 20

4.2.2 Using -law samples . 20

4.3 Using ADPCM compression . 20

4.3.1 Encoding ADPCM streams . 20

4.3.2 Using ADPCM streams . 21

5 Operating system specific information 22

5.1 Using DirectSound . 22

5.1.1 Initialization . 22

5.1.2 DirectSound modes . 23

5.1.3 Buffer sizes . 23

5.1.4 Using other DirectSound services with MIDAS 24

5.1.5 When to use DirectSound? . 24

5.1.6 DirectSound and multiple windows 25

5.2 MS-DOS timer callbacks . 25

5.2.1 Introduction . 25

5.2.2 Using timer callbacks . 26

5.2.3 Synchronizing to display refresh . 26

5.2.4 The callback functions . 27

5.2.5 Framerate control . 28

Chapter 1

Introduction

1.1 Welcome

Welcome to the exciting world of digital audio! MIDAS Digital Audio System is the most
comprehensive cross-platform digital audio system today. With features such as an unlimited
number of digital channels on all supported platforms, simultaneous sample, module and stream
playback, and seamless portability across operating systems, MIDAS is all you need for perfect
sound in your applications.

This manual is the Programmer’s Guide to the MIDAS Digital Audio System. It includes de-
scriptions about all aspects of MIDAS, including initialization, configuration and usage of dif-
ferent system components. It does not attempt to document all functions and data structures
available in MIDAS, but rather give a good overview on how you can use MIDAS in your own
programs. For complete descriptions of all function and data structures, see the MIDAS API
reference.

1.2 What is MIDAS?

What is MIDAS Digital Audio System anyway?

MIDAS Digital Audio System is a multichannel digital music and sound engine. It provides you
with an unlimited number of channels of digital audio that you can use to play music, sound
effects, speech or sound streams. MIDAS is portable across a wide range of operating systems,
and provides an identical API in all supported environments, making it ideal for cross-platform
software development.

MIDAS Digital Audio System is free for noncommercial usage, read the file license.txt in-
cluded in the MIDAS distribution for a detailed license. Commercial licenses are also available.

1

Chapter 2

Getting started

Although MIDAS Digital Audio System is a very powerful sound engine, it is also extremely
easy to use. This chapter contains all the information necessary to develop simple sound ap-
plications using MIDAS. It describes how to link MIDAS into your own programs, how to use
the MIDAS API functions from your own code, and concludes with a simple module player
program example.

2.1 Installing MIDAS

Installing MIDAS Digital Audio System is very simple: just create a separate directory for it,
and decompress the distribution archive. MIDAS is normally distributed as one or several .zip
files, and they all need to be decompressed in the same directory. If developing Win32 or Linux
applications, use an unzip utility that handles long filenames, such as InfoZip unzip or WinZip,
instead of MS-DOS pkunzip. Linux developers should decompress the files in Linux, as the
archive may contain symbolic links for the Linux libraries.

Note! Make sure your unzip utility decompresses subdirectories correctly. InfoZip unzip and
WinZip should do this by default, but pkunzip needs the “-d” option to do this.

2.2 Compiling with MIDAS

For applications using just the MIDAS Digital Audio System API, no special compilation op-
tions are necessary. All MIDAS API definitions are in the file midasdll.h, and the modules
using MIDAS functions simply need to #include this file. No special macros need to be
#defined, and the data structures are structure-packing neutral. midasdll.h is located in the
include/ subdirectory of the MIDAS distribution, and you may need to add that directory to
your include file search path.

2

CHAPTER 2. GETTING STARTED 3

Under Windows NT/95, the MIDAS API functions use the stdcall calling convention, the
same as used by the Win32 API. Under DOS, the functions use the cdecl calling convention,
and under Linux the default calling convention used by GCC. This is done transparently to the
user, however.

Delphi users can simply use the interface unit midasdll.pas, and access the MIDAS API
functions through it. Although Delphi syntax is different from C, the function, structure and
constant names are exactly the same, and all parameters are passed just like in the C versions.
Therefore all information in this document and the API Reference is also valid for Delphi.

MS-DOS users with Watcom C will need to disable the “SS==DS” assumption from the mod-
ules that contain MIDAS callback functions. This can be done with the “-zu” command line
option. Note that this is not necessary for code that just calls MIDAS functions.

2.3 Linking with MIDAS

If your program uses MIDAS Digital Audio System, you naturally need to link with the MIDAS
libraries as well. This section describes how to do that on each platform supported.

All MIDAS Digital Audio System libraries are stored under the lib/ subdirectory in the dis-
tribution. lib/ contains a subdirectory for each supported platform, and those in turn contain
directories for each supported compiler. The format of the compiler directory names is “¡com-
piler¿¡build¿”, where ¡compiler¿ is a two-letter abbreviation for the compiler name, and ¡build¿
the library build type — retail or debug. Under most circumstances, you should use the retail
versions of the libraries, as they contain better optimized code. Also, the debug libraries are not
included in all releases.

For example, lib/win32/vcretail/midas.lib is the retail build of the Win32 Visual C/C++
static library.

2.3.1 Windows NT/95

Under the Win32 platform, applications can link with MIDAS Digital Audio System either
statically or dynamically. Unless there is a specific need to link with MIDAS statically, dynamic
linking is recommended. Delphi users need to use dynamic linking always.

When linking with MIDAS statically, simply link with the library file corresponding to your
development platform. For Watcom C/C++, the library is lib/win32/wcretail/midas.lib,
and for Visual C/C++ lib/win32/vcretail/midas.lib. Depending on your configuration,
you may need to add the library directory to your “library paths” list. When MIDAS is linked
into the application statically, the .exe is self-contained and no MIDAS .dll files are needed.

CHAPTER 2. GETTING STARTED 4

Dynamic linking is done by linking with the appropriate MIDAS import library instead of the
static linking library. In addition, the MIDAS Dynamic Link Library (midasXX.dll) needs to
be placed in a suitable directory — either to the same directory with the program executable, or
in some directory in the user’s PATH. The import libraries are stored in the same directory with
the static libraries, but the file name is midasdll.lib. For example, Visual C users should link
with lib/win32/vcretail/midasdll.lib. The MIDAS Dynamic Link Libraries are stored
in lib/win32/retail and lib/win32/debug.

Delphi users do not need a separate import library — using the interface unit midasdll.pas
adds the necessary references to the .dll automatically. Note that running the program under
the Delphi IDE without the .dll available can cause strange error messages.

2.3.2 MS-DOS

As MS-DOS doesn’t support dynamic linking, only a static link library is provided for MS-
DOS. You’ll simply need to link with the library from the appropriate subdirectory — usually
lib/dos/gcretail for GCC (DJGPP) and lib/dos/wcretail for Watcom C. The executable
is fully self-contained, and no additional files are needed. DJGPP users also need to link with
the Allegro library, as MIDAS uses some of its functions for IRQ handling.

Note that some versions of the Watcom Linker are not case-sensitive by default, and you’ll need
to use case-sensitive linking with MIDAS. To do that, simply add option caseexact to your
linker directives.

2.3.3 Linux

For Linux, only a static library is provided for the time being. To link your program with
MIDAS Digital Audio System, add the proper library directory (usually lib/linux/gcretail)
to your library directory list (gcc option -L), and link the library in using the GCC option
-lmidas.

2.4 Using MIDAS from the IDE

This section contains step-by-step instructions on building applications that use MIDAS Digital
Audio System with the Integrated Developent Environments of popular compilers.

CHAPTER 2. GETTING STARTED 5

2.4.1 Using MIDAS with Visual C Developer Studio

This section contains contains simple step-by-step instructions for using MIDAS Digital Audio
System with Microsoft Developer Studio.

1. Begin the project as usual. If you already have an existing project, it should need no modifi-
cations.

2. Add some simple code for testing MIDAS — either copy the module player example below,
or just add a call to MIDASstartup to the beginning of the program and #include midasdll.h
at the beginning of the module.

3. Add the MIDAS include directories to the include search path: Open “Build/Project Settings”
-dialog, choose the “C/C++” tab, select “Preprocessor” from the Category list, and add the
MIDAS include directory to “Additional include directories”. For example, if you installed
MIDAS in d:/midas, add d:/midas/include.

4. Add a MIDAS library to the project. In most cases, you should use the retail import library,
and thus link dynamically. Open “Insert/Files into Project” -dialog, and select the library file
you want to use, typically d:/midas/lib/win32/vcretail/midasdll.lib.

Now you should be able to build the project normally. To be able to run the program, you must
make sure that the MIDAS DLL is available either in the same directory with the produced
executable, or in some directory in the system search path. You can simply copy the DLL from
(for example) d:/midas/lib/win32/retail to the project directory.

2.4.2 Using MIDAS with Watcom C IDE

This section contains contains simple step-by-step instructions for using MIDAS Digital Audio
System with Watcom C IDE.

1. Begin the project as usual. If you already have an existing project, it should need no modifi-
cations.

2. Add some simple code for testing MIDAS — either copy the module player example below,
or just add a call to MIDASstartup to the beginning of the program and #include midasdll.h
at the beginning of the module.

3. Add the MIDAS include directories to the include search path: Open “Options/C Compiler
Switches” -dialog, choose “1. File Option Switches” from the switches list, and add the MIDAS
include directory to “Include directories”. For example, if you installed MIDAS in d:/midas,
add d:/midas/include.

4. Add a MIDAS library to the project. In most cases, you should use the retail import library,
and thus link dynamically. Open “Sources/New Source” -dialog, and select the library file you
want to use, typically d:/midas/lib/win32/wcretail/midasdll.lib.

CHAPTER 2. GETTING STARTED 6

Now you should be able to build the project normally. To be able to run the program, you must
make sure that the MIDAS DLL is available either in the same directory with the produced
executable, or in some directory in the system search path. You can simply copy the DLL from
(for example) d:/midas/lib/win32/retail to the project directory.

2.5 A simple module player example

This section describes a very simple example program that uses MIDAS Digital Audio System
for playing music. First, the complete program source is given in both C and Delphi format, and
after that the operation of the program is described line by line. To keep the program as short
as possible, all error checking is omitted, and therefore it should not be used as a template for
building real applications — the other example programs included in the MIDAS distribution
are more suitable for that.

Both versions of the program should be compiled as console applications in the Win32 environ-
ment. Under MS-DOS and Linux the default compiler settings are fine.

2.5.1 C module player example

1 #include <stdio.h>
2 #include <conio.h>
3 #include "midasdll.h"
4
5 int main(void)
6 {
7 MIDASmodule module;
8 MIDASmodulePlayHandle playHandle;
9
10 MIDASstartup();
11 MIDASinit();
12 MIDASstartBackgroundPlay(0);
13
14 module = MIDASloadModule("..\\data\\templsun.xm");
15 playHandle = MIDASplayModule(module, TRUE);
16
17 puts("Playing - press any key");
18 getch();
19
20 MIDASstopModule(playHandle);
21 MIDASfreeModule(module);
22

CHAPTER 2. GETTING STARTED 7

23 MIDASstopBackgroundPlay();
24 MIDASclose();
25
26 return 0;
27 }

2.5.2 Delphi module player example

1 uses midasdll;
2
3 var module : MIDASmodule;
4 var playHandle : MIDASmodulePlayHandle;
5
6 BEGIN
7 MIDASstartup;
8 MIDASinit;
9 MIDASstartBackgroundPlay(0)
10
11 module := MIDASloadModule(’..\data\templsun.xm’);
12 playHandle MIDASplayModule(module, true);
13
14 WriteLn(’Playing - Press Enter’);
15 ReadLn;
16
17 MIDASstopModule(playHandle);
18 MIDASfreeModule(module);
19
20 MIDASstopBackgroundPlay;
21 MIDASclose;
22 END.

2.5.3 Module player example description

Apart from minor syntax differences, the C and Delphi versions of the program work nearly
identically. This section describes the operation of the programs line by line. The line numbers
below are given in pairs: first for C, second for Delphi.

1-3, 1 Includes necessary system and MIDAS definition files

7, 3 Defines a variable for the module that will be played

8, 4 Defines a variable for the module playing handle

CHAPTER 2. GETTING STARTED 8

10, 7 Resets the MIDAS internal state — This needs to be done before MIDAS is configured
and initialized.

11, 8 Initializes MIDAS

12, 9 Starts playing sound in the background

14, 11 Loads the module file

15, 12 Starts playing the module we just loaded, looping it

17-18, 14-15 Simply waits for a keypress

20, 17 Stops playing the module

21, 18 Deallocates the module we loaded

23, 20 Stops playing sound in the background

24, 21 Uninitializes the MIDAS Digital Audio System

Chapter 3

Using MIDAS Digital Audio System

This chapter contains detailed step-by-step instructions on using MIDAS Digital Audio System.
Complete descriptions of the functions, data structures and constants used here is available in
the API reference.

3.1 Initializing and configuring MIDAS

MIDAS Digital Audio System initialization consists of five basic steps, which are outlined
below. The last two steps are not necessary in all cases.

1. Call MIDASstartup. This should be done as early in the program as possible, preferably at the
very beginning. MIDASstartup does not take a significant amount of time, and does not allocate
any memory, it simply initializes MIDAS to a safe and stable state and resets all configration
options. Calling MIDASclose is always safe after MIDASstartup has been called.

2. Configure MIDAS. This can be done by setting different MIDAS options with MIDASsetOp-
tion, or by calling MIDASconfig to prompt the user for the settings. The configuration can also
be loaded from a file (with MIDASloadConfig) or registry (with MIDASreadConfigRegistry) at
this point. Apart from the configuration functions, no MIDAS functions may be called yet.

3. Initialize MIDAS by calling MIDASinit. All MIDAS functions are usable after this, and the
program can fully start using MIDAS. Most MIDAS configuration options can not be changed
while MIDAS is initialized, so to change the options it is necessary to uninitialize MIDAS first.

4. Start background sound playback. Unless you want to poll MIDAS manually (with MI-
DASpoll), you should now call MIDASstartBackgroundPlay to start background sound play-
back. MIDASstartBackgroundPlay starts a playback thread (in multithreaded systems) or a
timer, and polls MIDAS automatically from it.

9

CHAPTER 3. USING MIDAS DIGITAL AUDIO SYSTEM 10

5. Open sound channels with MIDASopenChannels. The number of open sound channel limits
the number of sounds that can be played simultaneously — one sound channel can play one
sound. The number of sound channels needed depends on the application, typical values might
be 8–32 channels for a module, one channel per stream and 1–8 channels for sound effects.
Having more channels open than necessary will not increase the CPU use, as inactive channels
do not need CPU attention. However, some sound cards may place limitations on the maxi-
mum number of open channels. If you are only playing a single module, opening the channels
manually is not necessary, as MIDASplayModule can open the needed channels automatically.

3.2 Uninitializing MIDAS

MIDAS Digital Audio System uninitialization is essentially the reverse process of initialization.
Actually only the last step is (calling MIDASclose) is absolutely necessary, but it is good practise
to uninitialize everything that has been initialized. In addition, all modules and samples that
have been loaded should be deallocated before uninitializing MIDAS, as failing to do so may
lead to memory leaks.

Basic MIDAS uninitialization consists of three steps:

1. If sound channels have been opened with MIDASopenChannels, close them by calling MI-
DAScloseChannels.

2. If background sound playback is used, stop it by calling MIDASstopBackgroundPlay.

3. Finally, uninitialize the rest of MIDAS Digital Audio System by calling MIDASclose.

3.3 Using modules

Digital music modules provide an easy to use and space-efficient method for storing music and
more complicated sound effects. MIDAS Digital Audio System supports Protracker (.mod),
Scream Tracker 3 (.s3m), FastTracker 2 (.xm) and Impulse Tracker (.it) modules. All types of
modules are used through the same simple API functions described in the subsections below.

3.3.1 Loading and deallocating modules

Loading modules with MIDAS Digital Audio System is very simple, just call MIDASloadMod-
ule, giving as an argument the name of the module file. MIDASloadModule returns a module
handle of type MIDASmodule, which can then be used to refer to the module. After the module
is no longer used, it should be deallocated with MIDASfreeModule.

CHAPTER 3. USING MIDAS DIGITAL AUDIO SYSTEM 11

3.3.2 Playing modules

Modules that have been loaded into memory can be played by calling MIDASplayModule. MI-
DASplayModule takes as an argument the module handle for the module, and a boolean flag that
indicates whether or not the module playback should loop or not. It returns a module playback
handle of type MIDASmodulePlayHandle that can be used to refer to the module as it is being
played.

MIDASplayModuleSection can be used to play just a portion of the module. A single module
could, for example, contain several different songs, and MIDASplayModuleSection can be used
to select which one of them to play.

MIDAS is also capable of playing several modules simultaneously, or even the same module
several times from different positions. There are some limitations, however, see MIDASplay-
Module documentation for details. This can be useful for using module sections as sound ef-
fects, or fading between two modules.

Module playback can be stopped by calling MIDASstopModule, passing it as an argument the
module playback handle returned by MIDASplayModule.

3.3.3 Controlling module playback

Although typically module playback just proceeds without user intervention, it is also possible
to control the playback of the module. MIDASsetPosition can be used to change the current
playing position, MIDASsetMusicVolume to set the master volume of the music, and MIDAS-
fadeMusicChannel to fade individual music channels in or out. All of these functions require as
their first argument the module playing handle from MIDASplayModule.

3.3.4 Getting module information

In MIDAS Digital Audio System, it is possible to query information about a module or the status
of module playback. This information can be used to update an user interface, or synchronize
the program operation to the music playback.

Basic information about the module, such as its name, is available by calling MIDASgetMod-
uleInfo. The function requires as an argument a module handle returned by MIDASloadModule,
and a pointer to a MIDASmoduleInfo structure, which it then will fill with the module informa-
tion. A similar function, MIDASgetInstrumentInfo, is available for reading information about
individual instruments in the module.

The current status of the playback of a module can be read with MIDASgetPlayStatus. It is
passed a module playback handle from MIDASplayModule, and a pointer to a MIDASplayStatus
structure, which it will then fill with the playback status information. The playback status

CHAPTER 3. USING MIDAS DIGITAL AUDIO SYSTEM 12

information includes the current module playback position, pattern number in that position and
the current playback row, as well as the most recent music synchronization command infobyte.

MIDAS Digital Audio System also supports a music synchronization callback function, which
will be called each time the player encounters a music synchronization command. The syn-
chronization command is Wxx for Scream Tracker 3 and FastTracker 2 modules, and Zxx for
Impulse Tracker modules. The callback can be set or removed with the function MIDASsetMu-
sicSyncCallback. As the music synchronization callback is called in MIDAS player context, it
should be kept as short and simple as possible, and it may not call MIDAS functions.

3.4 Using samples

Using samples is the easiest way to add sound effects and other miscellaneous sounds to a
program with MIDAS Digital Audio System. This section describes how samples are used in
MIDAS.

3.4.1 Loading samples

Before samples can be used, they naturally need to be loaded into memory. MIDAS Digital
Audio System currently supports samples in two formats: raw audio data files and RIFF WAVE
files. Raw sample files can be loaded with MIDASloadRawSample, and RIFF WAVE samples
with MIDASloadWaveSample. Both functions require as arguments the name of the sample file,
and sample looping flag — 1 if the sample should be looped, 0 if not. MIDASloadRawSample
also requires the sample type as an argument, MIDASloadWaveSample determines it from the
file header. Both functions return a sample handle of type MIDASsample that can be used to
refer to the sample.

After the samples are no longer used, they should be deallocated with MIDASfreeSample. You
need to make sure, however, that the sample is no longer being played on any sound channel
when it is deallocated.

3.4.2 Playing samples

Samples that have been loaded into memory can be played with the function MIDASplaySample.
It takes as arguments the sample handle, playback channel number, and initial values for sample
priority, playback rate, volume and panning. The function returns a MIDAS sample playback
handle of type MIDASsamplePlayHandle that can be used to refer to the sample as it is being
played. A single sample can be played any number of times simultaneously.

Sample playback can be stopped with MIDASstopSample, but this is not necessary before the
sample will be deallocated — a new sample can simply be played on the same channel, and it

CHAPTER 3. USING MIDAS DIGITAL AUDIO SYSTEM 13

will then replace the previous one. The sample handles will be recycled as necessary, so there
is no danger of memory leaks.

3.4.3 Samples and channels

One sound channel can be used to play a single sample, and therefore MIDASplaySample re-
quires the number of the channel that is used to play the sample as an argument. The channel
number can be set manually, or MIDAS Digital Audio System can handle the channel selection
automatically.

If the channel number for the sample is set manually, the channel used should be allocated
with MIDASallocateChannel to ensure that the channel is not being used for other purposes.
If a free channel is available, the function will return its number that can then be used with
MIDASplaySample. After the channel is no longer used, it should be deallocated with MIDAS-
freeChannel.

Another possibility is to let MIDAS select the channel automatically. A number of channels can
be allocated for use as automatic effect channels with MIDASallocAutoEffectChannels. MIDAS-
playSample can then be passed MIDAS CHANNEL AUTO as the channel number, and it will
automatically select the channel that will be used to play the effect. After the automatic effect
channels are no longer used, they should be deallocated with MIDASfreeAutoEffectChannels.

3.4.4 Controlling sample playback

Most sample playback properties can be changed while it is being played. MIDASsetSampleR-
ate can be used to change its playback rate, MIDASsetSampleVolume its volume, MIDASset-
SamplePanning its panning position and MIDASsetSamplePriority its playback priority. All of
these functions take as an argument the sample playback handle from MIDASplaySample, and
the new value for the playback property.

The sample playback properties can be changed at any point after the sample playback has been
started until the sample playback is stopped with MIDASstopSample. If the sample has reached
its end, or has been replaced by another sample with automatic channel selection, the function
call is simply ignored.

3.4.5 Getting sample information

The sample playback status can be monitored with MIDASgetSamplePlayStatus. It takes as
an argument the sample playback handle, and returns the current sample playback status. The
playback status information can be used to determine whether or not a sample has already
reached its end.

CHAPTER 3. USING MIDAS DIGITAL AUDIO SYSTEM 14

3.5 Using streams

In MIDAS Digital Audio System, streams are continuous flows of sample data. Unlike samples,
they do not need to be loaded completely into memory before they can be played, but can rather
be loaded from disk or generated as necessary. This section describes how streams are used in
MIDAS.

3.6 Playing streams

There are two different ways of playing streams in MIDAS Digital Audio System: stream file
playback and polling stream playback. In stream file playback, MIDAS creates a new thread
that will read the stream data from a given file and plays it automatically on the background.
In polling stream playback the user needs to read or generate the stream data, and feed it to
MIDAS.

Stream files are played with MIDASplayStreamFile and MIDASplayStreamWaveFile. Both
functions require as arguments the stream file name, stream playback buffer length and stream
looping flag. The files played with MIDASplayStreamFile should contain only raw sample data,
and the function will therefore require as arguments also the stream data sample type and play-
back rate. MIDASplayStreamWaveFile plays RIFF WAVE files, and can read the information
from the file header. The playback functions will return a stream handle that can be used to
refer to the stream.

Polling stream playback is started with MIDASplayStreamPolling. It requires as its arguments
the stream sample type, playback rate and buffer length. The actual stream playback will not
start, however, until some stream data is fed to the system with MIDASfeedStreamData. After
the playback has starter, MIDASfeedStreamData needs to be called periodically to feed the
system new stream data to play, otherwise the system will run out of stream data and stop
playback.

The stream playback buffer length controls the amount of stream data buffered for stream play-
back. The longer the buffer is, the longer the system can play the stream when new data is not
available until the playback needs to be stopped. Running out of stream data will result in irri-
tating breaks in the sound and should be avoided. Longer playback buffers will, however, add
delay to the stream playback, and consume more memory. For stream file playback, a stream
buffer length of 500ms should be suitable. For polling stream playback, the buffer length should
be at least twice the longest expected delay between two calls to MIDASfeedStreamData.

Stream playback is stopped with MIDASstopStream, regardless of the stream type.

CHAPTER 3. USING MIDAS DIGITAL AUDIO SYSTEM 15

3.6.1 Controlling stream playback

The stream playback properties can be changed while it is being played. MIDASsetStreamRate
can be used to change its playback rate, MIDASsetStreamVolume its volume and MIDASset-
StreamPanning its panning position. All of these functions take as an argument the stream
handle from the stream playback function, and the new value for the playback property.

The playback of the stream can also be paused with MIDASpauseStream, and resumed after
pausing with MIDASresumeStream. This can be useful if your application knows it will run out
of stream data soon, and wishes to fade the stream out and pause it until more data is available.
Stream data reading and feeding can continue while the stream is paused until the stream buffer
is full.

3.6.2 Getting stream information

The amount of data currently in the stream buffer can be monitored with MIDASgetStreamBytes-
Buffered. The information could be used to determine how soon new stream data is needed to
continue playback, or whether or not enough space exists in the stream buffer for a complete
new block of data.

Note that with ADPCM streams the stream buffer contains the decompressed data, as 16-bit
samples, instead of the compressed ADPCM data.

3.7 Using echo effects

The MIDAS Digital Audio System Echo Effects Engine can be used to add different echo and
reverb effects to the sound output. These effects can range from simple echoes and filtering
effects to heavy hall reverbs and stereo enhancements. This section describes how the echo
effects are used

3.7.1 Adding echo effects

Echo effects are added to the sound output with MIDASaddEchoEffect. It takes as an argument
a pointer to a filled MIDASechoSet structure (described below), and returns and echo handle that
can then be used to refer to the effect. The echo set structure is not used after MIDASaddEchoEf-
fect returns, and may be deallocated. Any number of echo effects can be active simultaneously.

After the echo effect is no longer wanted, it can be removed from the output with MIDAS-
removeEchoEffect. Note that modifying the MIDASechoSet structure of an echo effect that is
already being used has no effect.

CHAPTER 3. USING MIDAS DIGITAL AUDIO SYSTEM 16

3.7.2 The echo effect structure

A MIDAS Digital Audio System echo effect is described by a MIDASechoSet structure. The
echo set contains three common fields plus one or more echoes. The feedback field controls
the amount of feedback in the echo set, gain the echo effect total gain, and numEchoes simply
the number of echoes in the echo set. See the MIDASechoSet description in the API Reference
for more details.

The echoes of an echo set are described by an array of MIDASecho structures. Each echo has
fields that describe its delay, gain, filtering and channel reverse status. The delay of an echo
controls how far back from the echo effect delay line the data for the echo is taken — the
greater the delay, the longer the echo is. Gain controls the strength of the echo, the echo data is
essentially multiplied by the gain. Each echo can optionally be low-pass or high-pass filtered, in
a system with more than a couple of echoes, low-pass filtering can reduce the build-up of high-
frequency noise. Finally, the left and right channels of the echo can be reversed, producing an
interesting stereo effect in some cases.

Chapter 4

Advanced topics

This chapter includes advanced programming information about MIDAS Digital Audio System.
Although the information contained here is not necessary for being able to use MIDAS, it should
be read by everybody who wishes to get everything out of it. Topics covered here include
performance optimization, sound quality optimization, and working with compressed sample
types.

4.1 Optimizing MIDAS performance

Although MIDAS Digital Audio System has been carefully optimized for maximum perfor-
mance, playing multichannel digital audio can still be fairly time-consuming. To get around the
limitations of current PC sound cards, MIDAS needs to mix the sound channels in software, and
this mixing process accounts for most of CPU usage caused by MIDAS. In many cases tradeoffs
can be made between sound quality and CPU usage, although it is also possible in some cases
to lower CPU usage dramatically without affecting sound quality.

In some cases the opposite is also true: It can be possible to get better sound quality out of
MIDAS without using much additional CPU power. This section therefore describes how you
can get best possible sound quality of MIDAS while using as little CPU time as possible, and
how to find the right balance between sound quality and CPU usage for your application.

4.1.1 The number of channels

First and foremost, the CPU time used for mixing depends on the number of active sound
channels in use. Each channel needs to mixed to the output separately, and thus requires CPU
time. Note, however, that the total number of open channels is not very significant, only the

17

CHAPTER 4. ADVANCED TOPICS 18

number of channels that are actually playing sound. Also, sounds played at zero volume take
very little CPU time.

On a computer with a 90MHz Pentium CPU, with the default sound quality settings, the CPU
time used is roughly 0.6%–0.9% of the total CPU time per channel. The number can vary
greatly depending on the type of samples used and other factors, but can be used as a guideline
in deciding how many sound channels to use. Regardless of the output mode settings, however,
minimizing the number of channels used is an easy way to increase MIDAS performance.

Using fewer sound channels does not necessarily mean sacrificing sound quality or richness.
Music modules do not necessarily need to have over 10 channels to sound good — talented
musicians have composed stunning songs with the Amiga Protracker program which only sup-
ports 4 channels. Unnecessary or very quiet sound effects could be eliminated, making way
for more important ones. Finally, instead of playing two or more sounds simultaneously, the
sounds could be mixed beforehand with a sample editor into one.

4.1.2 Sample types

Another factor that has a great effect on MIDAS Digital Audio System CPU usage is the type
of the samples played. The simplest sample type, and therefore the fastest to play, is a 8-bit
mono sample. 16-bit samples take typically 50% more CPU time to play than 8-bit samples,
and stereo samples more than 50% than corresponding mono samples. In addition, ADPCM
streams take additional CPU time for decompressing the ADPCM data to 16-bit before it can
be played.

However, 16-bit samples do sound much better than 8-bit ones. A good compromise is to
use mu-law samples instead. mu-law samples have almost the same sound quality as 16-bit
samples, while being as fast to mix as 8-bit samples. In addition, they only take as much
space as 8-bit samples, and thus lower the memory requirements of the program as well. In
some mixing modes MIDAS will actually automatically convert 16-bit samples to mu-law if
it is beneficial. The option MIDAS OPTION 16BIT ULAW AUTOCONVERT can be used to
control this behaviour.

ADPCM compression yields a 1:4 compression on 16-bit sound data, using effectively only 4
bits per sample, while maintaining sound quality better than 8-bit samples. As ADPCM sample
data cannot easily be played without decompressing it first, however, MIDAS only supports
ADPCM sample data in streams. Although ADPCM streams take somewhat more CPU time
to play than 16-bit streams, as the data needs to be decompressed, they can still turn out to be
faster in practise, as the amount of data that needs to be read from disk is much smaller.

CHAPTER 4. ADVANCED TOPICS 19

4.1.3 Output settings

Finally perhaps the most important factor in determining MIDAS CPU usage and sound quality:
output sound quality settings. Several different sound quality settings can be adjusted, and each
can be used to adjust the balance of sound quality and CPU usage.

The most important of all output quality settings is the mixing mode. By default, MIDAS Digital
Audio System uses normal mixing mode, which has very good performance. High-quality
mixing mode with sound interpolation is available, and it greatly enhances the sound quality in
some cases, but also requires much more CPU power. High-quality mixing can use two to three
times as much CPU time as normal quality mixing, and should be reserved for applications
that only use a few sound channels or do not require the CPU time for other uses. The mixing
mode settings can be changed by setting the option MIDAS OPTION MIXING MODE with
MIDASsetOption.

Another setting that greatly affects CPU usage and sound quality is the output mixing rate.
CPU usage depends almost linearly on the mixing rate, with higher mixing rates using more
CPU power but also sounding better. The default mixing rate is 44100Hz, but in many cases it
can be lowered to 32000Hz or 22050Hz without too great sound quality loss. In addition, if all
of your sounds are played at the same rate (eg. 22050Hz), the mixing rate should be set at the
same rate — using a higher rate would not bring any better sound quality and could actually
increase noise in the output.

Experimenting with different mixing rate and mode combinations can also be worthwhile, as in
some cases using a lower mixing rate with high-quality mixing can sound better than a higher
mixing rate with normal quality.

The last setting to consider is the output mode setting. The output mode should normally be
set to a 16-bit mode, as using 8-bit modes does not decrease CPU usage, only sound qual-
ity. If the sound card used doesn’t support 16-bit output, MIDAS will use 8-bit output auto-
matically. Using mono output instead of stereo, however, can decrease CPU usage by up to
50%. Therefore, if your application does not use stereo effects in its sound output, consider
using mono output mode instead. The output mode can be changed by setting the option MI-
DAS OPTION OUTPUTMODE with MIDASsetOption.

4.2 Using -law compression

In MIDAS Digital Audio System, -law samples and streams can be used as an effective com-
promise between CPU and space usage and sound quality, as they provide sound quality almost
equivalent to 16-bit samples while using only as much CPU time and space as 8-bit samples.
This section describes how -law samples are encoded and used with MIDAS.

CHAPTER 4. ADVANCED TOPICS 20

4.2.1 Encoding -law samples

Encoding -law samples is simple. The tools/ directory in the MIDAS distribution contains
directories for each supported platform, and these directories contain a program called ulaw.
This program can be used to encode 16-bit samples into -law samples, and decode -law samples
back to 16-bit ones. The syntax is simple. To encode a 16-bit sample file to -law, use:

ulaw e input-file-name output-file-name

And to decode a -law file to a 16-bit one, use:

ulaw d input-file-name output-file-name

The files should contain just raw sample data, with no headers. Stereo and mono samples and
streams are processed exactly the same way.

4.2.2 Using -law samples

-law samples and streams are used just like any other samples and streams in MIDAS Digital
Audio System. Simply pass the playback function MIDAS SAMPLE ULAW MONO or MI-
DAS SAMPLE ULAW STEREO as the sample type, and everything will work normally. -law
sample data can be used for both samples and streams.

4.3 Using ADPCM compression

ADPCM streams provide a space-effective way of storing long sections of audio with a fairly
good sound quality. Although ADPCM streams have lower sound quality than uncompressed
16-bit ones, they do sound better than 8-bit ones, and, as they only use effectively 4-bit samples,
they provide 1:4 compression to the sound. This section descibes how ADPCM streams are
encoded and used with MIDAS Digital Audio System.

4.3.1 Encoding ADPCM streams

Encoding ADPCM streams is fairly simple. The tools/ directory in the MIDAS distribution
contains directories for each supported platform, and these directories contain a program called
adpcm. This program can be used to encode 16-bit streams into ADPCM ones, and decode
ADPCM streams back to 16-bit. The syntax is similar to the -law encoder, although a bit more
complicated. To encode a 16-bit stream into ADPCM, use:

CHAPTER 4. ADVANCED TOPICS 21

adpcm e input-file-name output-file-name channels frame-length

Where channels is the number of channels in the stream (1 for mono, 2 for stereo) and frame-
length the ADPCM frame length in bytes, including the frame header. As ADPCM sample data
is adaptative delta encoded, it is normally impossible to start decoding an ADPCM stream from
the middle. To get around this problem, MIDAS divides the ADPCM stream into “frames”, and
is able to start decoding from the beginning of any frame.

The frame length you should use depends on the needs of your application. If your application
will always play the streams from beginning to end, any value will do — 1024 is a reasonable
choice. However, if stream playback can start from the middle of the stream, you should con-
sider how the stream is accessed. In particular, if the stream is read in blocks of a set number of
bytes, the frame length should be equal to the block size.

If you wish to make the ADPCM frames of a given length of time, remember that each ADPCM
sample is 4 bits. Therefore, one byte of ADPCM data will contain data for two mono samples
or one stereo sample. The ADPCM frame header is 9 bytes long for mono streams and 12 bytes
long for stereo ones. Therefore, to get 59ms long frames for a stereo stream played at 22050Hz,
the frame length should be 453 bytes.

To decode an ADPCM stream back to a 16-bit one, use:

adpcm d input-file-name output-file-name channels frame-length

Like with the -law encoder/decoder, the files should contain just raw sample data, with no
headers.

4.3.2 Using ADPCM streams

ADPCM streams are used just like other streams in MIDAS Digital Audio System. Simply
pass MIDAS SAMPLE ADPCM MONO or MIDAS SAMPLE ADPCM STEREO as the sample
type to the MIDAS stream playback functions, and everything will work normally. ADPCM
sample data can only be used for streams. If you are feeding the stream data manually, however,
remember that playback can only start from the beginning of an ADPCM frame.

Chapter 5

Operating system specific information

Although the normal MIDAS Digital Audio System APIs are indentical in all supported plat-
forms, there are some operating system specific points that should be noted. In particular, the
limitations of the MS-DOS operating system make it somewhat difficult to program under.

5.1 Using DirectSound

Beginning from version 0.7, MIDAS Digital Audio System supports DirectSound for sound
output. Although most of the time this is done completely transparently to the user, there are
some decisions that need to be made in the initialization phase.

5.1.1 Initialization

By default, DirectSound support in MIDAS Digital Audio System is disabled. To enable it,
set MIDAS OPTION DSOUND MODE to a value other than MIDAS DSOUND DISABLED.
The DirectSound mode you choose depends on the needs of your application, and the available
modes are described in detail in the next section.

In addition to the DirectSound mode, you also need to set the window handle that MIDAS
will in turn pass to DirectSound. DirectSound uses this window handle to determine the active
window, as only the sound played by the active application will be heard. To set the window
handle, simply call

MIDASsetOption(MIDAS_OPTION_DSOUND_HWND, (DWORD) hwnd);

where hwnd is the window handle of your application’s main window.

22

CHAPTER 5. OPERATING SYSTEM SPECIFIC INFORMATION 23

5.1.2 DirectSound modes

Apart from MIDAS DSOUND DISABLED, three different DirectSound modes are available in
MIDAS Digital Audio System. This section describes them in detail.

MIDAS DSOUND STREAM: DirectSound stream mode. MIDAS will play its sound to a
DirectSound stream buffer, which will then be mixed to the primary buffer by DirectSound. If
the DirectSound object hasn’t explicitly been set, MIDAS will initialize DirectSound and set
the primary buffer format to the same as MIDAS output format. This mode allows arbitrary
buffer length, and possibly smoother playback than primary buffer mode, but has a larger CPU
overhead.

MIDAS DSOUND PRIMARY: DirectSound primary buffer mode. The sound data will be
played directly to the DirectSound primary buffer. This mode has the smallest CPU overhead
of all available DirectSound modes, and provides smallest possible latency, but is not without
its drawbacks: The primary buffer size is set by the driver, and cannot be changed, so the buffer
size may be limited.

MIDAS DSOUND FORCE STREAM: This mode behaves exactly like the stream mode, ex-
cept that DirectSound usage is forced. Normally, MIDAS will not use DirectSound if it is
running in emulation mode (as the standard Windows WAVE output device will provide better
performance), so this mode must be used to force DirectSound usage. Forcing MIDAS to use
DirectSound in stream mode will also the applications to use DirectSound themselves simulta-
neously.

By default, MIDAS an automatical fallback mechanism for DirectSound modes: If DirectSound
support is set to primary mode, but primary buffer is not available for writing, MIDAS will
use stream mode instead. And, if DirectSound is running in emulation mode, MIDAS will
automatically use normal Win32 audio services instead. This way it is possible to simply set
the desired DirectSound mode, and let MIDAS decide the best of the alternatives available.

5.1.3 Buffer sizes

When MIDAS Digital Audio System is using DirectSound with proper drivers (ie. not in emu-
lation mode), much smaller buffer sizes can be used than normal. Because of this, the Direct-
Sound buffer size is set with a different option setting — MIDAS OPTION DSOUND BUFLEN
— from the normal mixing buffer length. When playing in emulation mode, MIDAS will use
the normal mixing buffer length, as smaller buffers can’t be used as reliably.

Selecting the correct buffer size is a compromise between sound latency and reliability: the
longer the buffer is, the greater latency the sound has, and the longer it takes the sound to
actually reach output, but the smaller the buffer is made, the more often the music player needs
to be called. To ensure that there are no breaks in sound playback, the music player needs to be

CHAPTER 5. OPERATING SYSTEM SPECIFIC INFORMATION 24

called at least twice, preferably four times, during each buffer length: for a 100ms buffer, for
example, the sound player needs to be called at least every 50ms, or 20 times per second.

Although the calling frequency requirements don’t seem to be very severe, in practise trying to
guarantee that a function gets called even 20 times per second can be difficult. The realtime
capabilities of the Win32 platform, especially Windows 95, leave a lot to be desired: A 16-bit
program or system service can easily block the system for long periods of time. By default,
MIDAS uses a separate thread for background playback, but although this thread runs at a
higher priority than the rest of the program, you may find that using manual polling will help
you get more consistent and reliable sound playback.

Unfortunately there is no single buffer size that works for everybody, so some experimentation
will be needed. The default MIDAS DirectSound buffer size is 100ms, which should be a
reasonable compromise for most applications, but, depending on your applications, buffer sizes
at 50ms or below should be usable.

5.1.4 Using other DirectSound services with MIDAS

If necessary, it is also possible to use other DirectSound services simultaneously with MIDAS
Digital Audio System. In this case, MIDAS should be set to use DirectSound in forced stream
mode, and the DirectSound object needs to be explicitly given to MIDAS before initialization:

MIDASsetOption{MIDAS_OPTION_DSOUND_OBJECT, (DWORD) ds);

Where ds is a pointer to the DirectSound object used, returned by DirectSoundCreate(). The
user is also responsible for setting DirectSound cooperative level and primary buffer format.

Although this DirectSound usage is not recommended, it can be used, for example, to play
music with MIDAS while using the DirectSound services directly for playing sound effects.

5.1.5 When to use DirectSound?

Although DirectSound provides a smaller latency than the normal Windows sound devices, and
possibly smaller CPU overhead, it is not suitable of all applications. This section gives a quick
overview on what applications should use DirectSound, what shouldn’t, and which DirectSound
mode is most appropriate.

The most important drawback of DirectSound is, that only the active application gets its sound
played. While this can be useful with games that run fullscreen, it makes DirectSound com-
pletely unusable for applications such as music players, as background playback is impossible
with DirectSound. Therefore standalone music player programs should never use DirectSound.

CHAPTER 5. OPERATING SYSTEM SPECIFIC INFORMATION 25

Also, if your application does not benefit from the reduced latency that DirectSound provides,
it is safer not to use DirectSound. The DirectSound drivers currently available are not very
mature, and the DirectX setup included in the DirectX SDK is far from trouble-free. In addition,
programs using DirectSound need to distribute the DirectX runtime with them, making them
considerably larger.

However, if you are writing an interactive high-performance application, where strict graphics
and sound synchronization is essential, DirectSound is clearly the way to go. For these kind
of applications, DirectSound primary buffer should be the best solution, unless there are clear
reasons for using stream mode.

5.1.6 DirectSound and multiple windows

When the application uses DirectSound for sound output, only the sound from the active win-
dow is played. Therefore DirectSound requires a window handle to be able to determine which
window is active. If the application has multiple windows that it needs to activate separately,
however, this can cause problems. DirectSound provides no documented way to change the
window handle on the fly.

To get around this problem, MIDAS Digital Audio System provides two functions to suspend
and resume playback: MIDASsuspend and MIDASresume. MIDASsuspend stops all sound play-
back, uninitializes the sound output device, and returns it to the operating system. MIDASre-
sume in turn resumes sound playback after suspension. These functions can be used to change
the DirectSound window handle on the fly: First call MIDASsuspend, set the new window han-
dle, and call MIDASresume to resume playback. This will cause a break to the sound, and the
sound data currently buffered to the sound output device will be lost.

Depending on the application, it may also be possible to get around the DirectSound multiple
window problem by creating a hidden parent window for all windows that will be used, and
pass the window handle of that parent window to DirectSound.

5.2 MS-DOS timer callbacks

This section describes how MIDAS Digital Audio System uses the MS-DOS system timer, and
how to install user timer callbacks. This information is not relevant in other operating systems.

5.2.1 Introduction

To be able to play music in the background in MS-DOS, and to keep proper tempo with all
sound cards, MIDAS needs to use the system timer (IRQ 0, interrupt 8) for music playback.

CHAPTER 5. OPERATING SYSTEM SPECIFIC INFORMATION 26

Because of this, user programs may not access the timer directly, as this would cause conflicts
with MIDAS music playback. As the system timer is often used for controlling program speed,
and running some tasks in the background, MIDAS provides a separate user timer callback for
these purposes. This callback should used instead of accessing the timer hardware directly.

The callbacks can be ran at any speed, and can optionally be synchronized to display refresh.

5.2.2 Using timer callbacks

Basic MIDAS timer callback usage is very simple: Simply call MIDASsetTimerCallbacks, pass-
ing it the desired callback rate and pointers to the callback functions. After that, the callback
functions will be called periodically until MIDASremoveTimerCallbacks is called. MIDASset-
TimerCallbacks takes the callback rate in milliHertz (one thousandth of a Hertz) units, so to get
a callback that will be called 70 times per second, set the rate to 70000. The callback functions
need to use MIDAS CALL calling convention (cdecl for Watcom C, empty for DJGPP),
take no arguments and return no value.

For example, this code snippet will use the timer to increment a variable tickCount 100 times
per second:

void MIDAS_CALL TimerCallback(void)
{

tickCount++;
}
...
MIDASinit();
...
MIDASsetTimerCallbacks(100000, FALSE, &TimerCallback, NULL, NULL);
...

5.2.3 Synchronizing to display refresh

The MIDAS timer supports synchronizing the user callbacks to display refresh under some
circumstances. Display synchronization does not work when running under Windows 95 and
similar systems, and may fail in SVGA modes with many SVGA cards. As display synchro-
nization is somewhat unreliable, and also more difficult to use than normal callbacks, using it is
not recommended if a normal callback is sufficient.

To synchronize the timer callbacks to screen refresh, use the following procedure:

1. BEFORE MIDAS Digital Audio System is initialized, set up the display mode you are going
to use, and get the display refresh rate corresponding to that mode using MIDASgetDisplayRe-
freshRate. If your application uses several different display modes, you will need to set up each

CHAPTER 5. OPERATING SYSTEM SPECIFIC INFORMATION 27

of them in turn and read the refresh rate for each separately. If MIDASgetDisplayRefreshRate
returns zero, it was unable to determine the display refresh rate, and you should use some de-
fault value instead. Display refresh rates, like timer callback rates, are specified in milliHertz
(1000*Hz), so 70Hz refresh rate becomes 70000.

2. Initialize MIDAS Digital Audio System etc.

3. Set up the display mode

4. Start the timer callbacks by calling MIDASsetTimerCallbacks. The first argument is the
refresh rate from step 1, second argument should be set to TRUE (to enable display synchro-
nization), and the remaining three arguments are pointers to the preVR, immVR and inVR
callback functions (see descriptions below).

5. When the callbacks are no longer used, remove them by calling MIDASremoveTimerCall-
backs.

When you are changing display modes, you must first remove the existing timer callbacks,
change the display modes, and restart the callbacks with the correct rate. Please note that
synchronizing the timer to the screen update takes a while, and as the timer is disabled for that
time it may introduce breaks in the music. Therefore we suggest you handle the timer screen
synchronization before you start playing music.

If MIDAS is unable to synchronize the timer to display refresh, it will simply run the callbacks
like normal user callbacks. Therefore there is no guarantee that the callbacks will actually get
synchronized to display, and your program should not depend on that. For example, you should
not use the timer callbacks for double buffering the display, as preVR might not be called at the
correct time — use triple buffering instead to prevent possible flicker.

5.2.4 The callback functions

MIDASsetTimerCallbacks takes as its three last arguments three pointers to the timer callback
functions. These functions are:

preVR() — if the callbacks are synchronized to display refresh, this function is called immedi-
ately before Vertical Retrace starts. It should be kept as short as possible, and can be used for
changing a couple of hardware registers (in particular the display start address) or updating a
counter.

immVR() — if the callbacks are synchronized to display refresh, this function is called immedi-
ately after Vertical Retrace starts. As preVR(), it should be kept as short as possible.

inVR() — if the callbacks are synchronized to display refresh, this function is called some time
later during Vertical Retrace. It can take a longer time than the two previous functions, and can
be used, for example, for setting the VGA palette. It should not take longer than a quarter of the
time between callbacks though.

CHAPTER 5. OPERATING SYSTEM SPECIFIC INFORMATION 28

If the callbacks are not synchronized to display refresh, the functions are simply called one after
another. The same timing requirements still hold though.

5.2.5 Framerate control

DOS programs typically control their framerate by checking the Vertical Retrace from the VGA
hardware. If MIDAS is playing music in the background, this is not a good idea, since the
music player can cause the program to miss retraces. Instead, the program should set up a timer
callback, possibly synchronize it to display refresh, use that callback to increment a counter,
and wait until the counter changes.

For example:

volatile unsigned frameCount;
...
void MIDAS_CALL PreVR(void)
{

frameCount++;
}
...
MIDASsetTimerCallbacks(70000, FALSE, &PreVR, NULL, NULL);
...
while (!quit)
{

DoFrame();
oldCount = frameCount;
while (frameCount == oldCount);

}

Note that frameCount needs to be declared volatile, otherwise the compiler might optimize the
wait completely away.

A similar strategy can be used to keep the program run at the same speed on different computers.
You can use the frame counter to determine how many frames rendering the display takes, and
run the movements for all those frames before rendering the next display.

